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Abstract. Nasopharyngeal carcinoma (NPC) is a common 
malignant tumor in South China and is characterized by a high 
death rate. Ophiopogonin B (OP‑B) is a bioactive component 
of Radix Ophiopogon japonicus, which is frequently used in 
traditional Chinese medicine to treat cancer. The present study 
aimed to examine the anti‑cancer properties of OP‑B on NPC 
cells. Cell viability and cell proliferation were measured using 
MTT and EdU assays. Flow cytometry was used to measure cell 
apoptosis, reactive oxygen species and mitochondrial membrane 
potential. Western blotting was used to investigate the expres‑
sion of apoptosis and Hippo signaling pathway proteins. OP‑B 
inhibited the proliferation of NPC cells by inducing apoptosis 
and disturbing the mitochondrial integrity. OP‑B enhanced ROS 
accumulation. In addition, OP‑B promoted the expression of 
mammalian STE20‑like kinase 1, large tumor suppressor 1 and 
phosphorylated yes‑associated protein (YAP) and suppressed 
the expression of YAP and transcriptional enhanced associate 
domain in NPC cells. OP‑B increased the expression of fork‑
head box transcription factor O1 in the nuclear fraction. In 
conclusion, OP‑B has therapeutic potential and feasibility in the 
development of novel YAP inhibitors for NPC.

Introduction

Nasopharyngeal carcinoma (NPC) is associated with 
Epstein‑Barr virus infection  (1). In  2018, there were an 
estimated 129,079 new cases of NPC and the an estimated 
72,987  deaths from NPC worldwide  (2). Epidemiological 
trends have shown that the incidence of NPC has declined 
progressively and related mortality has reduced substantially 

in the past decade (3). Given the complex proximity of the 
nasopharynx, surgical excision is rarely used to treat primary 
NPC (4). For a long time, radiotherapy has been recognized 
as the mainstay for the treatment of NPC (5), but ~50% of 
patients experienced recurrent tumor (6). Therefore, there is 
an urgent need to identify more effective agents.

Ophiopogonin B (OP‑B) is one of the main active compo‑
nents of Radix Ophiopogon japonicus (7). Studies have revealed 
that OP‑B suppresses tumorigenesis and induces apoptosis in 
gastric (8), colorectal (9) and lung cancers (10). OP‑B has been 
shown to regulate multiple cancer‑related signaling mecha‑
nisms, including JNK/c‑Jun (9), EPH Receptor A2/AKT (11), 
PI3K/AKT (12) and ERK signaling pathways (12). However, 
the anti‑cancer function of OP‑B and the underlying specific 
mechanisms remain to be elucidated.

The Hippo signaling pathway consists of a kinase cascade 
and transcription coactivators (13). Aberrant regulation of the 
Hippo pathway has been reported in several types of cancer, 
including NPC (14‑17). However, no studies have reported on 
the anticancer effect of OP‑B by regulating the Hippo pathway 
in NPC. The objective of the present study was to evaluate 
the effect of OP‑B against NPC and investigate the underlying 
mechanisms.

Materials and methods

Cell culture. The present study chose human EBV positive NPC 
cell (C666‑1) and EBV negative cells (HK1) (18). C666‑1 and HK1 
cells were purchased from the National Infrastructure of Cell 
Line Resource, Peking Union Medical College (Beijing, China). 
C666‑1 and HK1 cells were cultured in Dulbecco's modified 
Eagle medium (HyClone; Cytiva) containing 10% fetal bovine 
serum (HyClone; Cytiva). All cells were then incubated at 37˚C 
in a humidified atmosphere of 5% CO2.

Ophiopogonin  B (OP‑B; purity of  ≥97%; Shanghai 
Tauto Biotech Co., Ltd.) was dissolved in dimethyl sulfoxide 
(DMSO; Sigma‑Aldrich; Merck KGaA). For treatment of cells, 
OP‑B was diluted in culture medium to a final concentration of 
5, 10 and 20 µM (0.01% DMSO) at 25˚C for 30 min.

MTT assay. Cells were seeded (5x104 cells/well) in 96‑well 
plates and then OP‑B (5,  10  and  20  µM) was added for 
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12, 24, 48 or 72 h. MTT (20 µl; 5 mg/ml; Sigma‑Aldrich; 
Merck KGaA) was added and incubated for another 4 h at 37˚C. 
Afterwards, 150 µl dimethyl sulfoxide was added at room 
temperature for 10 min. Absorbance was assessed at 490 nm 
using a microplate reader (BioTek Instruments, Inc.).

EdU assay. Cell proliferation was detected using the 
BeyoClick™ EdU‑594 detection kit (cat.  no.  C0078S; 
Beyotime Institute of Biotechnology). Briefly, following treat‑
ment with OP‑B, cells were incubated with 50 mM EdU for 
2 h at 37˚C and incubated with 4',6‑diamidino‑2‑phenylindole 
for 30 min at 37˚C. After staining, images were photographed 
under a fluorescence microscope (Olympus).

Apoptosis analysis. The Annexin V‑FITC/propidium iodide (PI) 
apoptosis detection kit was used to detect cell apoptosis. 
Briefly, following treatment with OP‑B, cells were collected. 
5 µl Annexin V‑FITC and 5 µl PI were then added, mixed 
and incubated for 15 min at room temperature. Apoptosis 
was evaluated using a flow cytometer (BD Accuri C6 Plus; 
BD  Biosciences) and FlowJo software (v10.6.2; FlowJo, 
LLC). The apoptotic rate was calculated as the percentage of 
early + late apoptotic cells.

Measurement of mitochondrial membrane potential (MMP). 
MMP was examined using the fluorescent probe 5,5',6,6‑tetra‑
chloro‑1, 1',3,3'‑tetraethyl‑benzimidazolylcarbocyanine iodide 
(JC‑1, Beyotime Institute of Biotechnology). Briefly, following 
treatment with OP‑B, cells were incubated with JC‑1 staining 
solution at 37˚C for 20 min. MMP was detected using flow 
cytometry as aforementioned (BD Biosciences).

Measurement of intracellular reactive oxygen species (ROS). 
Intracellular ROS were detected using an ROS assay kit 
(Nanjing Jiancheng Bioengineering Institute). In brief, following 
treatment with OP‑B, 10 µM 2,7‑dichlorodihydrofluorescein 
diacetate (DCFH‑DA) was added to the cells at 37˚C for 20 min. 
The median fluorescence intensity of ROS was measured using 
a flow cytometer as aforementioned (BD Biosciences).

Malondialdehyde (MDA) assay and superoxide dismutase 
(SOD) assay. MDA and SOD activity were assessed using 
MDA assay kit and SOD assay kit (Nanjing Jiancheng 
Bioengineering Institute).

Small interfering RNA (siRNA) transfection. The yes‑associated 
protein (YAP) siRNA (sense: 5'‑ACU​UUU​CGC​UGC​AAG​
UUG​CUA‑3'; antisense: 3'‑GCA​ACU​UGC​AGC​GAA​AAG​
UUU‑5'), control siRNA (sense: 5'‑UUC​UCC​GAA​CGU​GUC​
ACG​UTT‑3'; antisense: 3'‑ACG​UGA​CAC​GUU​CGG​AGA​
ATT‑5') were synthesized by Shanghai GenePharma Co., Ltd. 
C666‑1 and HK1 cells (106 cells/well) were seeded in six‑well 
plates. The cells were transfected with 100 nM of YAP siRNA 
or control siRNA using Lipofectamine® 2000 (Invitrogen; 
Thermo Fisher Scientific, Inc.) at 37˚C, and the medium was 
changed for fresh after 6 h. After 48 h, the C666‑1 and HK1 cells 
were harvested and exposed to OP‑B (5 µM) for 24 h at 37˚C.

Western blotting. C666‑1 and HK1 cells (1x106) were harvested 
and lysed them with radioimmunoprecipitation assay buffer 

(Beyotime Institute of Biotechnology). Total protein was 
quantified by using an Enhanced BCA Protein Assay kit 
(Beyotime Institute of Biotechnology). Total protein (50 µg) 
was loaded on 12% sodium dodecyl sulphate polyacrylamide 
gel electrophoresis. Subsequently, the gel was transferred to a 
polyvinylidene fluoride membrane (Millipore). The membrane 
was blocked by using 5% non‑fat milk for 1 h at 25˚C. After 
blocking, the membrane was incubated with anti‑YAP (1:1,000; 
cat. no. 4912), anti‑phosphorylated  (p‑)YAP (S127; 1:1,000; 
cat. no. 4911), anti‑mammalian sterile 20‑like kinase 1 (MST1; 
1:1,000; cat. no. 3682), anti‑large tumor suppressor 1 (LATS1; 
1:1,000; cat. no. 3477), anti‑transcriptional enhanced asso‑
ciate domain 1 (TEAD1; 1:1,000; cat. no. 12292), anti‑Bcl‑2 
(1:1,000; cat.  no.  3498), anti‑Bax (1:1,000; cat.  no.  2774), 
anti‑caspase‑3 (1:1,000; cat. no. 9662), anti‑cleaved caspase‑3 
(1:1,000; cat.  no.  9661), anti‑poly(ADP‑ribose) polymerase 
(PARP; 1:1,000; cat. no. 9542), anti‑cleaved‑PARP (1:1,000; 
cat. no. 9545), anti‑forkhead box transcription factor O1 (FOXO1; 
1:1,000; cat. no. 2880), anti‑p‑FOXO1 (1:1,000; cat. no. 2486; 
all from Cell Signaling Technology, Inc.) and anti‑glyceralde‑
hyde‑3‑phosphate dehydrogenase (1:5,000; cat. no. P30008; 
Abmart Pharmaceutical Technology Co., Ltd.) overnight at 4˚C. 
Membranes were incubated with secondary antibody (1:5,000; 
cat. no. M21002, Abmart Pharmaceutical Technology Co., Ltd.) 
at room temperature for 2 h. Protein bands were detected using a 
chemiluminescence kit and a gel imaging system (Tanon 2500; 
Tanon Science and Technology Co., Ltd.).

Statistical analysis. Statistical analyses were performed 
using GraphPad Prism 7 (GraphPad Software, Inc.). The data 
represented mean ± standard deviation from three independent 
experiments. One‑way ANOVA and Tukey's post hoc test were 
conducted to evaluate changes among groups. P<0.05 was 
considered to indicate a statistically significant difference.

Results

OP‑B inhibits the proliferation of NPC cells. The chemical 
structure of OP‑B is shown in Fig. 1A. The effect of OP‑B on 
cell proliferation was investigated in C666‑1 and HK1 cell lines. 
The MTT assay demonstrated that OP‑B inhibited C666‑1 and 
HK1 cells proliferation in a dose and time‑dependent manner 
(Fig. 1B). As shown in Fig. 1C, OP‑B effectively inhibited the 
proliferation of C666‑1 and HK1 cells.

OP‑B induces apoptosis in NPC cells. Next, whether OP‑B 
induced apoptosis was investigated. Flow cytometry assays 
were used to confirm that OP‑B activated apoptosis in C666‑1 
and HK1 cells (Fig. 2A). Furthermore, OP‑B increased the 
expression of Bax, cleaved‑PARP and cleaved‑caspase‑3, 
whereas the expression of Bcl‑2, PARP and caspase‑3 was 
decreased by OP‑B in C666‑1 and HK1 cells (Fig. 2B). OP‑B 
induced a concentration‑dependent decrease in red/green 
fluorescence ratios in C666‑1 and HK1 cells (Fig. 2C).

OP‑B induces ROS in NPC cells. ROS from mitochondria are 
related to cell apoptosis (19). Following treatment with OP‑B, 
intracellular ROS levels were increased in C666‑1 and HK1 
cells (Fig. 3A). As shown in Fig. 3B and C, OP‑B increased the 
MDA content and decreased SOD activity.
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OP‑B increases the expression of FOXO1 in the nuclear 
fraction. OP‑B treatment decreased the ratio of p‑FOXO1 
vs. total FOXO1 in C666‑1 and HK1 cells (Fig. 4A). In addi‑
tion, FOXO1 protein level decreased in cytosolic fraction and 
increased in the nuclear fraction following treatment with 
OP‑B (Fig. 4B).

OP‑B regulates the Hippo‑YAP signaling pathway in NPC 
cells. OP‑B significantly increased the expression of MST1 
and LATS1, increased the ratio of p‑YAP vs. total YAP and 
decreased TEAD protein levels (Fig. 5). Therefore, the results 
suggested that OP‑B inhibited NPC cells tumorigenesis 
through the regulation of the Hippo signaling pathway.

Dysfunction of hippo‑YAP signaling increases the antitumor 
function of OP‑B. siYAP was transfected into C666‑1 and 

HK1 cells and the cell proliferation and apoptosis ability 
of these two  NPC cell lines detected. The expression of 
YAP decreased rapidly due to OP‑B treatment, YAP knock‑
down significantly reduced YAP expression (Fig. 6A). YAP 
knockdown promoted the inhibitory effect of OP‑B on the 
proliferation of C666‑1 and HK1 cells (Fig. 6B). In addition, 
YAP knockdown induced the enhancing effect of OP‑B on 
apoptosis in C666‑1 and HK1 cells (Fig. 6C).

Discussion

The current study revealed that OP‑B exerted its anti‑cancer 
effects by inhibiting cell proliferation, inducing cell apoptosis 
and regulating the Hippo signaling pathway.

The mitochondrial pathway is a crucial mechanism 
of ophiopogonin‑mediated cell death in gastric cancer 

Figure 1. OP‑B inhibits the proliferation of nasopharyngeal carcinoma cells. (A) Chemical structure of OP‑B. (B) MTT was used to evaluate cell inhibition rate. 
(C) EdU assay was used to measure cell proliferation. *P<0.05; **P<0.01; and ***P<0.001 vs. control group. OP‑B, Ophiopogonin B.
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Figure 2. OP‑B induced apoptosis of nasopharyngeal carcinoma cells. (A) Annexin V/PI analysis was used to detected OP‑B induced apoptosis rates. (B) The 
expression of Bax, Bcl‑2, cleaved caspase‑3, caspase‑3, cleaved PARP1 and PARP1 was detected by western blotting. (C) Mitochondrial membrane potential 
was evaluated using JC‑1 staining. *P<0.05; **P<0.01; and ***P<0.001 vs. control group. OP‑B, Ophiopogonin B; JC‑1, 5,5',6,6‑tetrachloro‑1, 1',3,3'‑tetraethyl-
benzimidazolylcarbocyanine iodide.



MOLECULAR MEDICINE REPORTS  24:  534,  2021 5

and prostate cancer  (8,20). The balance of proapoptotic 
protein (Bax) and antiapoptotic protein (Bcl‑2) maintains a 
healthy survival/death balance in cells (21). Caspase‑3 is a 
critical molecule for stimulating cancer apoptosis (22), which 
is activated by pro‑apoptotic factors (23). The present study 

found that OP‑B increased the Bax/Bcl‑2 ratio and activated 
caspase‑3 level. PARP could be cleaved by caspase‑3 during 
apoptosis  (24) and was also clearly detected following 
OP‑B treatment in NPC cells. Meanwhile, suppression of MMP 
was found in the process of OP‑B‑induced NPC cell apoptosis, 

Figure 4. OP‑B increases the expression of FOXO1 in nucleus. (A) The expression of p‑FOXO1 and FOXO1 protein was evaluated by western blotting. (B) The 
expression of FOXO1 protein in nucleus and cytoplasm was separately analyzed by western blotting. *P<0.05; **P<0.01; and ***P<0.001 vs. control group. OP‑B, 
Ophiopogonin B; p‑, phosphorylated; FOXO1, forkhead box transcription factor O1.

Figure 3. OP‑B induced ROS generation in NPC. (A) ROS generation was detected by flow cytometry. Effect of OP‑B on (B) MDA content and (C) SOD activi‑
ties in NPC cells. *P<0.05; **P<0.01; and ***P<0.001 vs. control group. OP‑B, Ophiopogonin B; ROS, reactive oxygen species; NPC, nasopharyngeal carcinoma 
cells; MDA, malondialdehyde; SOD, superoxide dismutase. 
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which was consistent with results of a previous study (8). This 
finding indicated that the mitochondria‑mediated apoptotic 
pathway contributes to the process of OP‑B‑induced apoptosis 
in NPC cells.

The mitochondria of cancer cells overproduce ROS (25). 
ROS induce DNA‑damage and cell death (26). The genera‑
tion of ROS and reduction in MMP has been reported to be 
important in triggering apoptosis (27). Natural products have 
attracted attention as good candidate chemotherapeutic drugs 
for cancer therapies, due to their ability to maintain oxidative 
metabolism with minimal toxicity (28). For example, plum‑
bagin is known to induce apoptosis in lung cancer through 
ROS production (29). OP‑B participates in ROS generation in 
the gastric cancer cells (8). SOD is an antioxidant that removes 
superoxide radicals (30). It has been reported that targeting 
SOD is a promising approach to selectively kill cancer 

cells  (31). The present study found that OP‑B accelerated 
mitochondrial ROS production, decreased SOD levels and 
promoted apoptotic cell death in NPC cells.

FOXO1 serves an important role in cell proliferation and 
chemosensitivity in NPC cells (32). The results of the present 
study are in accordance with previous findings that trifluoperazine 
increases the expression of FOXO1 in the nucleus and enhances 
the expression of Bax, but decreases the expression of Bcl‑2 (33).

The Hippo pathway was originally found in Drosophila 
melanogaster  (34). It is generally accepted that the 
highly‑conserved Hippo pathway serves a vital role in 
maintaining tissue and organ size, stem cell and tumori‑
genesis  (35‑37). YAP and PDZ‑binding motif  (TAZ) 
actively promote cell proliferation through a transcrip‑
tional program mediated by TEAD family transcription 
factors (38). Mechanistically, YAP/TAZ depletion diminishes 

Figure 5. OP‑B regulates the Hippo‑YAP pathway in nasopharyngeal carcinoma cells. The expression of the Hippo‑YAP pathway proteins was evaluated 
by western blotting. *P<0.05; **P<0.01; and ***P<0.001 vs. control group. OP‑B, Ophiopogonin B; p‑, phosphorylated; YAP; yes‑associated protein; MST1, 
mammalian sterile 20‑like kinase 1; LATS1, large tumor suppressor 1; p‑, phosphorylated; TEAD, transcriptional enhanced associate domain 1.
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glycolysis‑dependent proliferation and increases mitochon‑
drial respiration and ROS production, resulting in oxidative 
stress‑induced cell death (39). In NPC, the Hippo pathway 
has been found to be dysregulated. Li et al  (40) reported 
that the Hippo pathway attenuates the sensitivity of NPC 
cells to cisplatin by inducing epithelial‑mesenchymal transi‑
tion. Elevated expression of YAP, a Hippo pathway effector, 
is observed in NPC  (41). Overexpression of YAP rescues 
the effect of testis‑associated oncogenic lncRNA knock‑
down on NPC cell stemness and sensitivity of NPC cells to 
cisplatin (42). In the present study, OP‑B markedly increased 
the activation of Hippo pathway components, such as MST1, 
LATS1 and phosphorylated YAP. Additionally, the protein 
expression of YAP and TEAD was decreased in NPC cells 

following treatment with OP‑B. Previous studies have shown 
the LATS‑mediated phosphorylation of YAP at Ser127 and 
its nuclear localization (43‑45). Moreover, YAP knockdown 
promoted the inhibitory effect of OP‑B on proliferation and 
induced the effect of OP‑B on apoptosis in C666‑1 and HK1 
cells. This result is partly consistent with a recent study that 
indicates that artemisinin inhibits hepatocellular carcinoma 
cell proliferation, migration and invasion by suppressing Hippo 
signaling (46). The results of the present study suggested that 
OP‑B regulated Hippo signaling pathway in NPC cells.

The present study indicated that OP‑B inhibited NPC cells 
survival by activating mitochondria‑mediated apoptosis via 
the Hippo pathway. OP‑B appears to be a potential therapeutic 
agent for NPC patients.

Figure 6. Knockdown of YAP increased the antitumor function of OP‑B in nasopharyngeal carcinoma cells. (A) The expression of YAP protein was evaluated 
by western blotting. (B) MTT was used to evaluate cell inhibition rate. (C) Annexin V/PI analysis was used to measure the proapoptotic effect. ***P<0 001 vs. 
control group. YAP; yes‑associated protein; OP‑B, Ophiopogonin B; si, short interfering; NC, negative control.
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